Nilai lim_(x→1)⁡ ((x^2+x-2) sin⁡(x-1))/(x^2-2x+1)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 1} \ \frac{(x^2+x-2) \sin (x-1)}{x^2 - 2x + 1} = \cdots \)

  1. 4
  2. 3
  3. 0
  4. \( -\frac{1}{4} \)
  5. \( -\frac{1}{2} \)

(SPMB 2005)

Pembahasan:

\begin{aligned} \lim_{x \to 1} \ \frac{(x^2+x-2) \sin (x-1)}{x^2 - 2x + 1} &= \lim_{x \to 1} \ \frac{(x+2)(x-1) \sin(x-1)}{(x-1)(x-1)} \\[8pt] &= \lim_{x \to 1} \ \frac{(x+2)\sin(x-1)}{(x-1)} \\[8pt] &= \lim_{x \to 1} \ (x+2) \cdot \lim_{x \to 1} \ \frac{\sin(x-1)}{(x-1)} \\[8pt] &= (1+2) \cdot 1 \\[8pt] &= 3 \end{aligned}

Jawaban B.